Author Affiliations
Abstract
1 Key Laboratory of Material Science and Technology for High Power Lasers, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
A new design of shallow-etched multilayer dielectric grating (MDG) exhibiting a diffraction efficiency (DE) of approximately 100% in the –1st order at 1064-nm wavelength in Littrow mounting is reported. Particle swarm optimization algorithm and Fourier modal method are used to design MDG and calculate the DE of MDG. The thickness of the grating layer is less than 80 nm which is much shallower than that in the currently reported MDG design for a high DE, which is greatly helpful for the MDG etching process. Meanwhile, the bandwidth of DE which is more than 97.5% of MDG is 60 nm, and it is a meaningful result for MDG to be used in ultrashort pulse compression system.
多层介质膜光栅 浅刻蚀 粒子群优化算法 傅里叶模式方法 050.0050 Diffraction and gratings 050.1940 Diffraction 050.1950 Diffraction gratings 050.2770 Gratings 310.0310 Thin films 
Chinese Optics Letters
2010, 8(s1): 29
Author Affiliations
Abstract
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China
A guided-mode resonance (GMR) filter with the same material (Ta2O5) for both the grating layer and the waveguide layer is designed and fabricated. This simple structure is easy to fabricate and can avoid the defects at the grating/waveguide interface using different materials. The spectral response measured with a Lambda 900 spectrophotometer under normal incidence for TE waves exhibits a peak reflectance exceeding 80% at the wavelength of 1040 nm with a full-width half-maximum (FWHM) linewidth of 23 nm. We evaluate the deviations of the fabricated structure from the designed parameters.
导模共振、滤光片、离子束旋转刻蚀 050.1950 Diffraction gratings 310.2790 Guided waves 230.7408 Wavelength filtering devices 310.6860 Thin films, optical properties 
Chinese Optics Letters
2010, 8(5): 447

关于本站 Cookie 的使用提示

中国光学期刊网使用基于 cookie 的技术来更好地为您提供各项服务,点击此处了解我们的隐私策略。 如您需继续使用本网站,请您授权我们使用本地 cookie 来保存部分信息。
全站搜索
您最值得信赖的光电行业旗舰网络服务平台!